Performance Benchmarks - Seagate FireCuda Gaming SSD Review: RGB-Infused USB 3.2 Gen 2x2 Storage

August 2024 ยท 11 minute read

Performance Benchmarks

Benchmarks such as ATTO and CrystalDiskMark help provide a quick look at the performance of the direct-attached storage device. The results translate to the instantaneous performance numbers that consumers can expect for specific workloads, but do not account for changes in behavior when the unit is subject to long-term conditioning and/or thermal throttling. Yet another use of these synthetic benchmarks is the ability to gather information regarding support for specific storage device features that affect performance.

Synthetic Benchmark - ATTO

Seagate claims read and write speeds of up to 2000 MBps, and these are backed up by the ATTO benchmarks provided below. ATTO benchmarking is restricted to a single configuration in terms of queue depth, and is only representative of a small sub-set of real-world workloads. It does allow the visualization of change in transfer rates as the I/O size changes, with optimal performance being reached around 512 KB for a queue depth of 4.

ATTO Benchmarks
TOP:BOTTOM:

Synthetic Benchmark - CrystalDiskMark

CrystalDiskMark. for example, uses four different access traces for reads and writes over a configurable region size. Two of the traces are sequential accesses, while two are 4K random accesses. Internally, CrystalDiskMark uses the Microsoft DiskSpd storage testing tool. The 'Seq128K Q32T1' sequential traces use 128K block size with a queue depth of 32 from a single thread, while the '4K Q32T16' one does random 4K accesses with the same queue configuration, but from multiple threads. The 'Seq1M' traces use a 1MiB block size. The plain 'Rnd4K' one uses only a single queue and single thread . Comparing the '4K Q32T16' and '4K Q1T1' numbers can quickly tell us whether the storage device supports NCQ (native command queuing) / UASP (USB-attached SCSI protocol). If the numbers for the two access traces are in the same ballpark, NCQ / UASP is not supported. This assumes that the host port / drivers on the PC support UASP.

CrystalDiskMark Benchmarks
TOP:BOTTOM:

The FireCuda Gaming SSD has a slight edge in the low queue depth, large-sized sequential, as well as random reads common in gaming scenarios. However, as queue depth increases, the WD_BLACK P50 returns better numbers. Fortunately for Seagate, most gaming workloads have only low queue depths - the ones in which the FireCuda Gaming SSD returns better numbers.

AnandTech DAS Suite

Our testing methodology for storage bridges / direct-attached storage units takes into consideration the usual use-case for such devices. The most common usage scenario is transfer of large amounts of photos and videos to and from the unit. Other usage scenarios include the use of the unit as a download or install location for games and importing files directly from it into a multimedia editing program such as Adobe Photoshop. Some users may even opt to boot an OS off an external storage device.

The AnandTech DAS Suite tackles the first use-case. The evaluation involves processing five different workloads:

Except for the 'Disk-to-Disk' workload, each data set is first placed in a 29GB RAM drive, and a robocopy command is issue to transfer it to the external storage unit (formatted in exFAT for flash-based units, and NTFS for HDD-based units).

 robocopy /NP /MIR /NFL /J /NDL /MT:32 $SRC_PATH $DEST_PATH 

Upon completion of the transfer (write test), the contents from the unit are read back into the RAM drive (read test) after a 10 second idling interval. This process is repeated three times for each workload. Read and write speeds, as well as the time taken to complete each pass are recorded. Whenever possible, the temperature of the external storage device is recorded during the idling intervals. Bandwidth for each data set is computed as the average of all three passes.

The 'Disk-to-Disk' workload involves a similar process, but with one iteration only. The data is copied to the external unit from the CPU-attached NVMe drive, and then copied back to the internal drive. It does include more amount of continuous data transfer in a single direction, as data that doesn't fit in the RAM drive is also part of the workload set.

Audio and Video Read

The FireCuda Gaming SSD is the clear winner in almost all write workloads (we will see the reason further down in this review). However, our robocopy read benchmarks are high queue depth / multi-threaded, since we try to copy up to 32 streams in parallel. As we saw in the CrystalDiskMark workloads, the performance suffers a bit compared to the WD_BLACK p50 in that department. The SK hynix P31, on the other hand, is a consistent performer across both types of workloads. For all practical purposes, the casual user will notice no difference between them in the course of normal usage. However, power users may want to dig deeper to understand the limits of each device. To address this concern, we also instrumented our evaluation scheme for determining performance consistency.

Performance Consistency

Aspects influencing the performance consistency include SLC caching and thermal throttling / firmware caps on access rates to avoid overheating. This is important for power users, as the last thing that they want to see when copying over 100s of GB of data is the transfer rate going down to USB 2.0 speeds.

In addition to tracking the instantaneous read and write speeds of the DAS when processing the AnandTech DAS Suite, the temperature of the drive was also recorded. In earlier reviews, we used to track the temperature all through. However, we have observed that SMART read-outs for the temperature in NVMe SSDs using USB 3.2 Gen 2 bridge chips end up negatively affecting the actual transfer rates. To avoid this problem, we have restricted ourselves to recording the temperature only during the idling intervals. The graphs below present the recorded data.

AnandTech DAS Suite - Performance Consistency
TOP:BOTTOM:

The first three sets of writes and reads correspond to the AV suite. A small gap (for the transfer of the video suite from the internal SSD to the RAM drive) is followed by three sets for the Home suite. Another small RAM-drive transfer gap is followed by three sets for the Blu-ray folder. This is followed up with the large-sized ISO files set. Finally, we have the single disk-to-disk transfer set. A closer look at the first write shows that the FireCuda Gaming SSD maintains 1800 MBps all through, but the WD_BLACK P50 has a 1.8 GBps peak but then flatlines to around 1.4 GBps. This points to a really small SLC cache that does get reclaimed fast enough (in the read interval) to service the next write set. On the other hand, the disk-to-disk transfer set (300GB+) brings the FireCuda Gaming SSD to its knees - ending up with a 600 MBps wrte speed towards the last set of files. This points to the SLC cache of the Seagate SSD being somewhat lesser than 300GB in size. On the temperature front, the Seagate SSD doesn't pass 52C at any point of time during the benchmarking. The P50, on the other hand, goes as high as 76C before settling down to 68C at the end of the benchmarking process. The P50 is at a slight disadvantage, though. The operations previous to the performance consistency test had ended up with the P50 at 53C (compared to 37C for the FireCuda).

PCMark 10 Storage Bench - Real-World Access Traces

There are a number of storage benchmarks that can subject a device to artificial access traces by varying the mix of reads and writes, the access block sizes, and the queue depth / number of outstanding data requests. We saw results from two popular ones - ATTO, and CrystalDiskMark - in a previous section. More serious benchmarks, however, actually replicate access traces from real-world workloads to determine the suitability of a particular device for a particular workload. Real-world access traces may be used for simulating the behavior of computing activities that are limited by storage performance. Examples include booting an operating system or loading a particular game from the disk.

PCMark 10's storage bench (introduced in v2.1.2153) includes four storage benchmarks that use relevant real-world traces from popular applications and common tasks to fully test the performance of the latest modern drives:

Despite the data drive benchmark appearing most suitable for testing direct-attached storage, we opt to run the full system drive benchmark as part of our evaluation flow. Many of us use portable flash drives as boot drives and storage for Steam games. These types of use-cases are addressed only in the full system drive benchmark.

The Full System Drive Benchmark comprises of 23 different traces. For the purpose of presenting results, we classify them under five different categories:

PCMark 10 also generates an overall score, bandwidth, and average latency number for quick comparison of different drives. The sub-sections in the rest of the page reference the access traces specified in the PCMark 10 Technical Guide.

Booting Windows 10

The read-write bandwidth recorded for each drive in the boo access trace is presented below.

Windows 10 Boot

Booting Windows involves lots of low queue depth random reads, and the FireCuda is a champ in that department.

Creative Workloads

The read-write bandwidth recorded for each drive in the sacr, saft, sill, spre, slig, sps, aft, exc, ill, ind, psh, and psl access traces are presented below.

Startup - Adobe Acrobat

The startup and usage sequences for various applications involves different amounts of queue depths and random / sequential reads. Depending on the exact mix, the P50 edges ahead in some, while the FireCuda gets the honors in others. The SK hynix P31 comes in the middle of the pack.

Office Workloads

The read-write bandwidth recorded for each drive in the exc and pow access traces are presented below.

Usage - Microsoft Excel

The SK hynix P31 is an all-round better performed for office workloads compared to either of the P50 or the FireCuda.

Gaming Workloads

The read-write bandwidth recorded for each drive in the bf, cod, and ow access traces are presented below.

Startup - Battlefield V

The FireCuda Gaming SSD performs way better than the P50 across all of the game startup traces, though it is actually the SK hynix P31 coming out on top in two of the three.

Files Transfer Workloads

The read-write bandwidth recorded for each drive in the cp1, cp2, cp3, cps1, cps2, and cps3 access traces are presented below.

Duplicating ISOs (Read-Write)

All these are low queue depth operations, and mostly sequential in nature. Since the size of the workloads is much lesser than the SLC cache of the FireCuda Gaming SSD, it is no surprise that the Seagate offering comes out on top in most of them.

Overall Scores

PCMark 10 reports an overall score based on the observed bandwidth and access times for the full workload set. The score, bandwidth, and average access latency for each of the drives are presented below.

Full System Drive Benchmark Bandwidth (MBps)

Overall, the Seagate FireCuda Gaming SSD emerges with the leading score in the PCMark 10 Storage Bench, though it is followed quite closely by the SK hynix P31 in the Silverstone MS12 enclosure.

ncG1vNJzZmivp6x7orrAp5utnZOde6S7zGiqoaenZH53hZBwZqydkZyutbGMn6CrnZOqsaJ5xpqkoqaXYsC0sIyrnK%2Bhlax6s7PBoqWfraOasW7B0ptkbGpdnLKveZGxaWarpKS%2ForPEaGk%3D